Raw content of Bio::Tools::Genemark # $Id: Genemark.pm,v 1.11.2.1 2003/04/24 08:51:48 heikki Exp $ # # BioPerl module for Bio::Tools::Genemark # # Cared for by Mark Fiers <hlapp@gmx.net> # # Copyright Hilmar Lapp, Mark Fiers # # You may distribute this module under the same terms as perl itself # POD documentation - main docs before the code =head1 NAME Bio::Tools::Genemark - Results of one Genemark run =head1 SYNOPSIS $Genemark = Bio::Tools::Genemark->new(-file => 'result.Genemark'); # filehandle: $Genemark = Bio::Tools::Genemark->new( -fh => \*INPUT ); # parse the results # note: this class is-a Bio::Tools::AnalysisResult which implements # Bio::SeqAnalysisParserI, i.e., $Genemark->next_feature() is the same while($gene = $Genemark->next_prediction()) { # $gene is an instance of Bio::Tools::Prediction::Gene, which inherits # off Bio::SeqFeature::Gene::Transcript. # # $gene->exons() returns an array of # Bio::Tools::Prediction::Exon objects # all exons: @exon_arr = $gene->exons(); # initial exons only @init_exons = $gene->exons('Initial'); # internal exons only @intrl_exons = $gene->exons('Internal'); # terminal exons only @term_exons = $gene->exons('Terminal'); # singleton exons: ($single_exon) = $gene->exons(); } # essential if you gave a filename at initialization (otherwise the file # will stay open) $Genemark->close(); =head1 DESCRIPTION The Genemark module provides a parser for Genemark gene structure prediction output. It parses one gene prediction into a Bio::SeqFeature::Gene::Transcript- derived object. This module has been developed around genemark.hmm for eukaryots v2.2a and will probably not work with other versions. This module also implements the Bio::SeqAnalysisParserI interface, and thus can be used wherever such an object fits. See L<Bio::SeqAnalysisParserI>. =head1 FEEDBACK =head2 Mailing Lists User feedback is an integral part of the evolution of this and other Bioperl modules. Send your comments and suggestions preferably to one of the Bioperl mailing lists. Your participation is much appreciated. bioperl-l@bioperl.org - General discussion http://bio.perl.org/MailList.html - About the mailing lists =head2 Reporting Bugs Report bugs to the Bioperl bug tracking system to help us keep track the bugs and their resolution. Bug reports can be submitted via email or the web: bioperl-bugs@bio.perl.org http://bugzilla.bioperl.org/ =head1 AUTHOR - Hilmar Lapp, Mark Fiers Email hlapp@gmx.net m.w.e.j.fiers@plant.wag-ur.nl Describe contact details here =head1 APPENDIX The rest of the documentation details each of the object methods. Internal methods are usually preceded with a _ =cut # Let the code begin... package Bio::Tools::Genemark; use vars qw(@ISA); use strict; use Symbol; use Bio::Root::Root; use Bio::Tools::AnalysisResult; use Bio::Tools::Prediction::Gene; use Bio::Tools::Prediction::Exon; use Bio::Seq; @ISA = qw(Bio::Tools::AnalysisResult); sub _initialize_state { my ($self,@args) = @_; # first call the inherited method! $self->SUPER::_initialize_state(@args); # our private state variables $self->{'_preds_parsed'} = 0; $self->{'_has_cds'} = 0; # array of pre-parsed predictions $self->{'_preds'} = []; # seq stack $self->{'_seqstack'} = []; } =head2 analysis_method Usage : $Genemark->analysis_method(); Purpose : Inherited method. Overridden to ensure that the name matches /GeneMark.hmm/i. Returns : String Argument : n/a =cut #------------- sub analysis_method { #------------- my ($self, $method) = @_; if($method && ($method !~ /Genemark\.hmm/i)) { $self->throw("method $method not supported in " . ref($self)); } return $self->SUPER::analysis_method($method); } =head2 next_feature Title : next_feature Usage : while($gene = $Genemark->next_feature()) { # do something } Function: Returns the next gene structure prediction of the Genemark result file. Call this method repeatedly until FALSE is returned. The returned object is actually a SeqFeatureI implementing object. This method is required for classes implementing the SeqAnalysisParserI interface, and is merely an alias for next_prediction() at present. Example : Returns : A Bio::Tools::Prediction::Gene object. Args : =cut sub next_feature { my ($self,@args) = @_; # even though next_prediction doesn't expect any args (and this method # does neither), we pass on args in order to be prepared if this changes # ever return $self->next_prediction(@args); } =head2 next_prediction Title : next_prediction Usage : while($gene = $Genemark->next_prediction()) { # do something } Function: Returns the next gene structure prediction of the Genemark result file. Call this method repeatedly until FALSE is returned. Example : Returns : A Bio::Tools::Prediction::Gene object. Args : =cut sub next_prediction { my ($self) = @_; my $gene; # if the prediction section hasn't been parsed yet, we do this now $self->_parse_predictions() unless $self->_predictions_parsed(); # get next gene structure $gene = $self->_prediction(); return $gene; } =head2 _parse_predictions Title : _parse_predictions() Usage : $obj->_parse_predictions() Function: Parses the prediction section. Automatically called by next_prediction() if not yet done. Example : Returns : =cut sub _parse_predictions { my ($self) = @_; my %exontags = ('Initial' => 'Initial', 'Internal' => 'Internal', 'Terminal' => 'Terminal', 'Single' => '', '_na_' => ''); my $exontag; my $gene; my $seqname; my $exontype; my $current_gene_no = -1; while(defined($_ = $self->_readline())) { if( (/^\s*(\d+)\s+(\d+)/) || (/^\s*(\d+)\s+[\+\-]/)) { # this is an exon, Genemark doesn't predict anything else # $prednr corresponds to geneno. my $prednr = $1; #exon no: my $signalnr = 0; if ($2) { my $signalnr = $2; } # used in tag: exon_no # split into fields chomp(); my @flds = split(' ', $_); # create the feature (an exon) object my $predobj = Bio::Tools::Prediction::Exon->new(); # define info depending on it being eu- or prokaryot my ($start, $end, $orientation, $prediction_source); if ($self->analysis_method() =~ /PROKARYOTIC/i) { $prediction_source = "Genemark.hmm.pro"; $orientation = ($flds[1] eq '+') ? 1 : -1; ($start, $end) = @flds[(2,3)]; $exontag = "_na_"; } else { $prediction_source = "Genemark.hmm.eu"; $orientation = ($flds[2] eq '+') ? 1 : -1; ($start, $end) = @flds[(4,5)]; $exontag = $flds[3]; } #store the data in the exon object $predobj->source_tag($prediction_source); $predobj->start($start); $predobj->end($end); $predobj->strand($orientation); $predobj->primary_tag($exontags{$exontag} . "Exon"); $predobj->add_tag_value('exon_no',"$signalnr") if ($signalnr); $predobj->is_coding(1); # frame calculation as in the genscan module # is to be implemented... #If the $prednr is not equal to the current gene, we #need to make a new gene and close the old one if($prednr != $current_gene_no) { # a new gene, store the old one if it exists if (defined ($gene)) { $gene->seq_id($seqname); $gene = undef ; } #and make a new one $gene = Bio::Tools::Prediction::Gene->new ( '-primary' => "GenePrediction$prednr", '-source' => $prediction_source); $self->_add_prediction($gene); $current_gene_no = $prednr; } # Add the exon to the gene $gene->add_exon($predobj, ($exontag eq "_na_" ? undef : $exontags{$exontag})); } if(/^(Genemark\.hmm\s*[PROKARYOTIC]*)\s+\(Version (.*)\)$/i) { $self->analysis_method($1); my $gm_version = $2; $self->analysis_method_version($gm_version); next; } #Matrix file for eukaryot version if (/^Matrices file:\s+(\S+)?/i) { $self->analysis_subject($1); # since the line after the matrix file is always the date # (in the output file's I have seen!) extract and store this # here if (defined(my $_date = $self->_readline())) { chomp ($_date); $self->analysis_date($_date); } } #Matrix file for prokaryot version if (/^Model file name:\s+(\S+)/) { $self->analysis_subject($1); # since the line after the matrix file is always the date # (in the output file's I have seen!) extract and store this # here my $_date = $self->_readline() ; if (defined($_date = $self->_readline())) { chomp ($_date); $self->analysis_date($_date); } } if(/^Sequence[ file]? name:\s+(.+)\s*$/i) { $seqname = $1; # $self->analysis_subject($seqname); next; } /^>/ && do { $self->_pushback($_); # section of predicted aa sequences on recognition # of a fasta start, read all sequences and find the # appropriate gene while (1) { my ($aa_id, $seq) = $self->_read_fasta_seq(); last unless ($aa_id); #now parse through the predictions to add the pred. protein FINDPRED: foreach my $gene (@{$self->{'_preds'}}) { $gene->primary_tag() =~ /[^0-9]([0-9]+)$/; my $geneno = $1; if ($aa_id =~ /\|gene.$geneno\|/) { #print "x SEQ : \n $seq \nXXXX\n"; my $seqobj = Bio::Seq->new('-seq' => $seq, '-display_id' => $aa_id, '-alphabet' => "protein"); $gene->predicted_protein($seqobj); last FINDPRED; } } } last; }; } # if the analysis query object contains a ref to a Seq of PrimarySeq # object, then extract the predicted sequences and add it to the gene # object. if (defined $self->analysis_query()) { my $orig_seq = $self->analysis_query(); FINDPREDSEQ: foreach my $gene (@{$self->{'_preds'}}) { my $predseq = ""; foreach my $exon ($gene->exons()) { #print $exon->start() . " " . $exon->end () . "\n"; $predseq .= $orig_seq->subseq($exon->start(), $exon->end()); } my $seqobj = Bio::PrimarySeq->new('-seq' => $predseq, '-display_id' => "transl"); $gene->predicted_cds($seqobj); } } $self->_predictions_parsed(1); } =head2 _prediction Title : _prediction() Usage : $gene = $obj->_prediction() Function: internal Example : Returns : =cut sub _prediction { my ($self) = @_; return undef unless(exists($self->{'_preds'}) && @{$self->{'_preds'}}); return shift(@{$self->{'_preds'}}); } =head2 _add_prediction Title : _add_prediction() Usage : $obj->_add_prediction($gene) Function: internal Example : Returns : =cut sub _add_prediction { my ($self, $gene) = @_; if(! exists($self->{'_preds'})) { $self->{'_preds'} = []; } push(@{$self->{'_preds'}}, $gene); } =head2 _predictions_parsed Title : _predictions_parsed Usage : $obj->_predictions_parsed Function: internal Example : Returns : TRUE or FALSE =cut sub _predictions_parsed { my ($self, $val) = @_; $self->{'_preds_parsed'} = $val if $val; if(! exists($self->{'_preds_parsed'})) { $self->{'_preds_parsed'} = 0; } return $self->{'_preds_parsed'}; } =head2 _has_cds Title : _has_cds() Usage : $obj->_has_cds() Function: Whether or not the result contains the predicted CDSs, too. Example : Returns : TRUE or FALSE =cut sub _has_cds { my ($self, $val) = @_; $self->{'_has_cds'} = $val if $val; if(! exists($self->{'_has_cds'})) { $self->{'_has_cds'} = 0; } return $self->{'_has_cds'}; } =head2 _read_fasta_seq Title : _read_fasta_seq() Usage : ($id,$seqstr) = $obj->_read_fasta_seq(); Function: Simple but specialised FASTA format sequence reader. Uses $self->_readline() to retrieve input, and is able to strip off the traling description lines. Example : Returns : An array of two elements. =cut sub _read_fasta_seq { my ($self) = @_; my ($id, $seq); local $/ = ">"; return 0 unless (my $entry = $self->_readline()); $entry =~ s/^>//; # complete the entry if the first line came from a pushback buffer while(! ($entry =~ />$/)) { last unless ($_ = $self->_readline()); $entry .= $_; } # delete everything onwards from an new fasta start (>) $entry =~ s/\n>.*$//s; # id and sequence if($entry =~ s/^(.+)\n//) { $id = $1; $id =~ s/ /_/g; $seq = $entry; $seq =~ s/\s//g; #print "\n@@ $id \n@@ $seq \n##\n"; } else { $self->throw("Can't parse Genemark predicted sequence entry"); } $seq =~ s/\s//g; # Remove whitespace return ($id, $seq); } 1;