Raw content of Bio::Tree::RandomFactory
# $Id: RandomFactory.pm,v 1.8 2002/12/24 17:52:03 jason Exp $
#
# BioPerl module for Bio::Tree::RandomFactory
#
# Cared for by Jason Stajich
#
# Copyright Jason Stajich
#
# You may distribute this module under the same terms as perl itself
# POD documentation - main docs before the code
=head1 NAME
Bio::Tree::RandomFactory - TreeFactory for generating Random Trees
=head1 SYNOPSIS
use Bio::Tree::RandomFactory
my $factory = new Bio::Tree::RandomFactory( -samples => \@taxonnames,
-maxcount => 10);
# or for anonymous samples
my $factory = new Bio::Tree::RandomFactory( -sample_size => 6,
-maxcount = 50);
=head1 DESCRIPTION
Builds a random tree every time next_tree is called or up to -maxcount times.
This algorithm is based on the make_tree algorithm from Richard Hudson 1990.
Hudson, R. R. 1990. Gene genealogies and the coalescent
process. Pp. 1-44 in D. Futuyma and J. Antonovics, eds. Oxford
surveys in evolutionary biology. Vol. 7. Oxford University
Press, New York
=head1 FEEDBACK
=head2 Mailing Lists
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to
the Bioperl mailing list. Your participation is much appreciated.
bioperl-l@bioperl.org - General discussion
http://bioperl.org/MailList.shtml - About the mailing lists
=head2 Reporting Bugs
Report bugs to the Bioperl bug tracking system to help us keep track
of the bugs and their resolution. Bug reports can be submitted via
the web:
http://bugzilla.bioperl.org/
=head1 AUTHOR - Jason Stajich
Email jason@bioperl.org
=head1 CONTRIBUTORS
Matthew Hahn, Ematthew.hahn@duke.eduE
=head1 APPENDIX
The rest of the documentation details each of the object methods.
Internal methods are usually preceded with a _
=cut
# Let the code begin...
package Bio::Tree::RandomFactory;
use vars qw(@ISA $PRECISION_DIGITS);
use strict;
BEGIN {
$PRECISION_DIGITS = 3; # Precision for the branchlength
}
use Bio::Factory::TreeFactoryI;
use Bio::Root::Root;
use Bio::TreeIO::TreeEventBuilder;
use Bio::Tree::AlleleNode;
@ISA = qw(Bio::Root::Root Bio::Factory::TreeFactoryI );
=head2 new
Title : new
Usage : my $factory = new Bio::Tree::RandomFactory(-samples => \@samples,
-maxcount=> $N);
Function: Initializes a Bio::Tree::RandomFactory object
Returns : Bio::Tree::RandomFactory
Args :
=cut
sub new{
my ($class,@args) = @_;
my $self = $class->SUPER::new(@args);
$self->{'_eventbuilder'} = new Bio::TreeIO::TreeEventBuilder();
$self->{'_treecounter'} = 0;
$self->{'_maxcount'} = 0;
my ($maxcount, $samps,$samplesize ) = $self->_rearrange([qw(MAXCOUNT
SAMPLES
SAMPLE_SIZE)],
@args);
my @samples;
if( ! defined $samps ) {
if( ! defined $samplesize || $samplesize <= 0 ) {
$self->throw("Must specify a valid samplesize if parameter -SAMPLE is not specified");
}
foreach ( 1..$samplesize ) { push @samples, "Samp$_"; }
} else {
if( ref($samps) =~ /ARRAY/i ) {
$self->throw("Must specify a valid ARRAY reference to the parameter -SAMPLES, did you forget a leading '\\'?");
}
@samples = @$samps;
}
$self->samples(\@samples);
$self->sample_size(scalar @samples);
if( defined $maxcount ) {
$self->maxcount($maxcount);
}
return $self;
}
=head2 next_tree
Title : next_tree
Usage : my $tree = $factory->next_tree
Function: Returns a random tree based on the initialized number of nodes
NOTE: if maxcount is not specified on initialization or
set to a valid integer, subsequent calls to next_tree will
continue to return random trees and never return undef
Returns : Bio::Tree::TreeI object
Args : none
=cut
sub next_tree{
my ($self) = @_;
# If maxcount is set to something non-zero then next tree will
# continue to return valid trees until maxcount is reached
# otherwise will always return trees
return undef if( $self->maxcount &&
$self->{'_treecounter'}++ >= $self->maxcount );
my $size = $self->sample_size;
my $in;
my @tree = ();
my @list = ();
for($in=0;$in < 2*$size -1; $in++ ) {
push @tree, { 'nodenum' => "Node$in" };
}
# in C we would have 2 arrays
# an array of nodes (tree)
# and array of pointers to these nodes (list)
# and we just shuffle the list items to do the
# tree topology generation
# instead in perl, we will have a list of hashes (nodes) called @tree
# and a list of integers representing the indexes in tree called @list
for($in=0;$in < $size;$in++) {
$tree[$in]->{'time'} = 0;
$tree[$in]->{'desc1'} = undef;
$tree[$in]->{'desc2'} = undef;
push @list, $in;
}
my $t=0;
# generate times for the nodes
for($in = $size; $in > 1; $in-- ) {
$t+= -2.0 * log(1 - $self->random(1)) / ( $in * ($in-1) );
$tree[2 * $size - $in]->{'time'} =$t;
}
# topology generation
for ($in = $size; $in > 1; $in-- ) {
my $pick = int $self->random($in);
my $nodeindex = $list[$pick];
my $swap = 2 * $size - $in;
$tree[$swap]->{'desc1'} = $nodeindex;
$list[$pick] = $list[$in-1];
$pick = int rand($in - 1);
$nodeindex = $list[$pick];
$tree[$swap]->{'desc2'} = $nodeindex;
$list[$pick] = $swap;
}
# Let's convert the hashes into nodes
my @nodes = ();
foreach my $n ( @tree ) {
push @nodes,
new Bio::Tree::AlleleNode(-id => $n->{'nodenum'},
-branch_length => $n->{'time'});
}
my $ct = 0;
foreach my $node ( @nodes ) {
my $n = $tree[$ct++];
if( defined $n->{'desc1'} ) {
$node->add_Descendent($nodes[$n->{'desc1'}]);
}
if( defined $n->{'desc2'} ) {
$node->add_Descendent($nodes[$n->{'desc2'}]);
}
}
my $T = new Bio::Tree::Tree(-root => pop @nodes );
return $T;
}
=head2 add_Mutations
Title : add_Mutations
Usage : $factory->add_Mutations($tree, $mutcount);
Function: Adds mutations to a tree via a random process weighted by
branch length (it is a poisson distribution
as part of a coalescent process)
Returns : none
Args : $tree - Bio::Tree::TreeI
$nummut - number of mutations
=cut
sub add_Mutations{
my ($self,$tree, $nummut) = @_;
my @branches;
my @lens;
my $branchlen = 0;
my $last = 0;
my @nodes = $tree->get_nodes();
my $precision = 10**$PRECISION_DIGITS;
my $i = 0;
# Jason's somewhat simplistics way of doing a poission
# distribution for a fixed number of mutations
# build an array and put the node number in a slot
# representing the branch to put a mutation on
# but weight the number of slots per branch by the
# length of the branch ( ancestor's time - node time)
foreach my $node ( @nodes ) {
if( $node->ancestor ) {
my $len = int ( ($node->ancestor->branch_length -
$node->branch_length) * $precision);
if ( $len > 0 ) {
for( my $j =0;$j < $len;$j++) {
push @branches, $i;
}
$last += $len;
}
$branchlen += $len;
}
if( ! $node->isa('Bio::Tree::AlleleNode') ) {
bless $node, 'Bio::Tree::AlleleNode'; # rebless it to the right node
}
$node->purge_markers;
$i++;
}
# sanity check
die("branch len is $branchlen arraylen is $last")
unless ( $branchlen == $last );
for( my $j = 0; $j < $nummut; $j++) {
my $index = int(rand($branchlen));
my $branch = $branches[$index];
$nodes[$branch]->add_alleles("Mutation$j", [1]);
}
}
=head2 maxcount
Title : maxcount
Usage : $obj->maxcount($newval)
Function:
Example :
Returns : value of maxcount
Args : newvalue (optional)
=cut
sub maxcount{
my ($self,$value) = @_;
if( defined $value) {
if( $value =~ /^(\d+)/ ) {
$self->{'maxcount'} = $1;
} else {
$self->warn("Must specify a valid Positive integer to maxcount");
$self->{'maxcount'} = 0;
}
}
return $self->{'_maxcount'};
}
=head2 samples
Title : samples
Usage : $obj->samples($newval)
Function:
Example :
Returns : value of samples
Args : newvalue (optional)
=cut
sub samples{
my ($self,$value) = @_;
if( defined $value) {
if( ref($value) !~ /ARRAY/i ) {
$self->warn("Must specify a valid array ref to the method 'samples'");
$value = [];
}
$self->{'samples'} = $value;
}
return $self->{'samples'};
}
=head2 sample_size
Title : sample_size
Usage : $obj->sample_size($newval)
Function:
Example :
Returns : value of sample_size
Args : newvalue (optional)
=cut
sub sample_size{
my ($self,$value) = @_;
if( defined $value) {
$self->{'sample_size'} = $value;
}
return $self->{'sample_size'};
}
=head2 attach_EventHandler
Title : attach_EventHandler
Usage : $parser->attatch_EventHandler($handler)
Function: Adds an event handler to listen for events
Returns : none
Args : Bio::Event::EventHandlerI
=cut
sub attach_EventHandler{
my ($self,$handler) = @_;
return if( ! $handler );
if( ! $handler->isa('Bio::Event::EventHandlerI') ) {
$self->warn("Ignoring request to attatch handler ".ref($handler). ' because it is not a Bio::Event::EventHandlerI');
}
$self->{'_handler'} = $handler;
return;
}
=head2 _eventHandler
Title : _eventHandler
Usage : private
Function: Get the EventHandler
Returns : Bio::Event::EventHandlerI
Args : none
=cut
sub _eventHandler{
my ($self) = @_;
return $self->{'_handler'};
}
=head2 random
Title : random
Usage : my $rfloat = $node->random($size)
Function: Generates a random number between 0 and $size
This is abstracted so that someone can override and provide their
own special RNG. This is expected to be a uniform RNG.
Returns : Floating point random
Args : $maximum size for random number (defaults to 1)
=cut
sub random{
my ($self,$max) = @_;
return rand($max);
}
1;