Bio::EnsEMBL::Utils Cache
SummaryPackage variablesSynopsisDescriptionGeneral documentationMethods
Toolbar
WebCvsRaw content
Summary
Tie::Cache - LRU Cache in Memory
Package variables
No package variables defined.
Synopsis
 use Tie::Cache;
tie %cache, 'Tie::Cache', 100, { Debug => 1 };
tie %cache2, 'Tie::Cache', { MaxCount => 100, MaxBytes => 50000 };
tie %cache3, 'Tie::Cache', 100, { Debug => 1 , WriteSync => 0};
# Options ################################################################## # # Debug => 0 - DEFAULT, no debugging output # 1 - prints cache statistics upon destroying # 2 - prints detailed debugging info # # MaxCount => Maximum entries in cache. # # MaxBytes => Maximum bytes taken in memory for cache based on approximate # size of total cache structure in memory # # There is approximately 240 bytes used per key/value pair in the cache for # the cache data structures, so a cache of 5000 entries would take # at approximately 1.2M plus the size of the data being cached. # # MaxSize => Maximum size of each cache entry. Larger entries are not cached. # This helps prevent much of the cache being flushed when # you set an exceptionally large entry. Defaults to MaxBytes/10 # # WriteSync => 1 - DEFAULT, write() when data is dirtied for # TRUE CACHE (see below) # 0 - write() dirty data as late as possible, when leaving # cache, or when cache is being DESTROY'd # ############################################################################ # cache supports normal tied hash functions $cache{1} = 2; # STORE print "$cache{1}\n"; # FETCH # FIRSTKEY, NEXTKEY while(($k, $v) = each %cache) { print "$k: $v\n"; } delete $cache{1}; # DELETE %cache = (); # CLEAR
Description
This module implements a least recently used (LRU) cache in memory
through a tie interface. Any time data is stored in the tied hash,
that key/value pair has an entry time associated with it, and
as the cache fills up, those members of the cache that are
the oldest are removed to make room for new entries.
So, the cache only "remembers" the last written entries, up to the
size of the cache. This can be especially useful if you access
great amounts of data, but only access a minority of the data a
majority of the time.
The implementation is a hash, for quick lookups,
overlaying a doubly linked list for quick insertion and deletion.
On a WinNT PII 300, writes to the hash were done at a rate
3100 per second, and reads from the hash at 6300 per second.
Work has been done to optimize refreshing cache entries that are
frequently read from, code like $cache{entry}, which moves the
entry to the end of the linked list internally.
Methods
CLEAR
No description
Code
DELETE
No description
Code
DESTROY
No description
Code
EXISTS
No description
Code
FETCH
No description
Code
FIRSTKEY
No description
Code
NEXTKEY
No description
Code
STORE
No description
Code
TIEHASH
No description
Code
_get_data_length
No description
Code
create_node
No description
Code
delete
No description
Code
flush
No description
Code
insert
No description
Code
pretty_chains
No description
Code
pretty_self
No description
Code
print
No description
Code
read
No description
Code
Methods description
None available.
Methods code
CLEARdescriptionprevnextTop
sub CLEAR {
    my($self) = @_;

    $self->print("CLEAR CACHE") if ($self->{dbg} > 1);

    if($self->{subclass}) {
	my $flushed = $self->flush();
	$self->print("FLUSH COUNT $flushed") if ($self->{dbg} > 1);
    }

    my $node;
    while($node = $self->{head}) {
	$self->delete($self->{head}[$KEY]);
    }

    1;
}
DELETEdescriptionprevnextTop
sub DELETE {
    my($self, $key) = @_;

    $self->print("DELETE $key") if ($self->{dbg} > 1);
    my $node = $self->delete($key);
    $node ? $node->[$VALUE] : undef;
}
DESTROYdescriptionprevnextTop
sub DESTROY {
    my($self) = @_;

    # if debugging, snapshot cache before clearing
if($self->{dbg}) { if($self->{hit} || $self->{miss}) { $self->{hit_ratio} = sprintf("%4.3f", $self->{hit} / ($self->{hit} + $self->{miss}));
} $self->print($self->pretty_self()); if($self->{dbg} > 1) { $self->print($self->pretty_chains()); } } $self->print("DESTROYING") if $self->{dbg} > 1; $self->CLEAR(); 1; } ####PERL##LRU##TIE##CACHE##PERL##LRU##TIE##CACHE##PERL##LRU##TIE##CACHE
## Helper Routines
####PERL##LRU##TIE##CACHE##PERL##LRU##TIE##CACHE##PERL##LRU##TIE##CACHE
# we use scalar_refs for the data for speed
}
EXISTSdescriptionprevnextTop
sub EXISTS {
    my($self, $key) = @_;
    exists $self->{nodes}{$key};
}
    
# firstkey / nextkey emulate keys() and each() behavior by
# taking a snapshot of all the nodes at firstkey, and
# iterating through the keys with nextkey
#
# this method therefore will only supports one each() / keys()
# happening during any given time.
#
}
FETCHdescriptionprevnextTop
sub FETCH {
    my($self, $key) = @_;

    my $node = $self->{nodes}{$key};
    if($node) {
	# refresh node's entry
$self->{hit}++; # if $self->{dbg};
# we used to call delete then insert, but we streamlined code
if(my $after = $node->[$AFTER]) { $self->{dbg} > 1 and $self->print("update() node $node to tail of list"); # reconnect the nodes
my $before = $after->[$BEFORE] = $node->[$BEFORE]; if($before) { $before->[$AFTER] = $after; } else { $self->{head} = $after; } # place at the end
$self->{tail}[$AFTER] = $node; $node->[$BEFORE] = $self->{tail}; $node->[$AFTER] = undef; $self->{tail} = $node; # always true after this
} else { # if there is nothing after node, then we are at the end already
# so don't do anything to move the nodes around
die("this node is the tail, so something's wrong") unless($self->{tail} eq $node); } $self->print("FETCH [$key, $node->[$VALUE]]") if ($self->{dbg} > 1); $node->[$VALUE]; } else { # we have a cache miss here
$self->{miss}++; # if $self->{dbg};
# its fine to always insert a node, even when we have an undef,
# because even if we aren't a sub-class, we should assume use
# that would then set the entry. This model works well with
# sub-classing and reads() that might want to return undef as
# a valid value.
my $value; if ($self->{subclass}) { $self->print("read() for key $key") if $self->{dbg} > 1; $value = $self->read($key); } if(defined $value) { my $length; if($self->{max_size}) { # check max size of entry, that it not exceed max size
$length = &_get_data_length(\$key,\$ value); if($length > $self->{max_size}) { $self->print("direct read() [$key, $value]") if ($self->{dbg} > 1); return $value; } } # if we get here, we should insert the new node
$node = &create_node($self,\$ key,\$ value, $length); &insert($self, $node); $value; } else { undef; } }
}
FIRSTKEYdescriptionprevnextTop
sub FIRSTKEY {
    my($self) = @_;

    $self->{'keys'} = [];
    my $node = $self->{head};
    while($node) {
	push(@{$self->{'keys'}}, $node->[$KEY]);
	$node = $node->[$AFTER];
    }

    shift @{$self->{'keys'}};
}
NEXTKEYdescriptionprevnextTop
sub NEXTKEY {
    my($self, $lastkey) = @_;
    shift @{$self->{'keys'}};
}
STOREdescriptionprevnextTop
sub STORE {
    my($self, $key, $value) = @_;
    my $node;

    $self->print("STORE [$key,$value]") if ($self->{dbg} > 1);

    # do not cache undefined values
defined($value) || return(undef); # check max size of entry, that it not exceed max size
my $length; if($self->{max_size}) { $length = &_get_data_length(\$key,\$ value); if($length > $self->{max_size}) { if ($self->{subclass}) { $self->print("direct write() [$key, $value]") if ($self->{dbg} > 1); $self->write($key, $value); } return $value; } } # do we have node already ?
if($self->{nodes}{$key}) { $node = &delete($self, $key); # $node = &delete($self, $key);
# $node->[$VALUE] = $value;
# $node->[$BYTES] = $length || &_get_data_length(\$key, \$value);
} # insert new node
$node = &create_node($self,\$ key,\$ value, $length); # $node ||= &create_node($self, \$key, \$value, $length);
&insert($self, $node); # if the data is sync'd call write now, otherwise defer the data
# writing, but mark it dirty so it can be cleanup up at the end
if ($self->{subclass}) { if($self->{sync}) { $self->print("sync write() [$key, $value]") if $self->{dbg} > 1; $self->write($key, $value); } else { $node->[$DIRTY] = 1; } } $value;
}
TIEHASHdescriptionprevnextTop
sub TIEHASH {
    my($class, $max_count, $options) = @_;

    if(ref($max_count)) {
	$options = $max_count;
	$max_count = $options->{MaxCount};
    }
	
    unless($max_count || $options->{MaxBytes}) {
	die('you must specify cache size with either MaxBytes or MaxCount');
    }

    my $sync = exists($options->{WriteSync}) ? $options->{WriteSync} : 1;

    my $self = bless 
      { 
       # how many items to cache
max_count=> $max_count, # max bytes to cache
max_bytes => $options->{MaxBytes}, # max size (in bytes) of an individual cache entry
max_size => $options->{MaxSize} || ($options->{MaxBytes} ? (int($options->{MaxBytes}/10) + 1) : 0),

# class track, so know if overridden subs should be used
'class' =>
$class,
'subclass' =>
$class ne 'Tie::Cache' ? 1 : 0,

# current sizes
count=>0,
bytes=>0,

# inner structures
head=>0,
tail=>0,
nodes=>{},
'keys'=>[],

# statistics
hit => 0,
miss => 0,

# config
sync =>
$sync,
dbg =>
$options->{Debug} || $Debug


},
$class;
if (($self->{max_bytes} && ! $self->{max_size})) { die("MaxSize must be defined when MaxBytes is"); } if($self->{max_bytes} and $self->{max_bytes} < 1000) { die("cannot set MaxBytes to under 1000, each raw entry takes $STRUCT_SIZE bytes alone"); } if($self->{max_size} && $self->{max_size} < 3) { die("cannot set MaxSize to under 3 bytes, assuming error in config"); } $self; } # override to write data leaving cache
}
_get_data_lengthdescriptionprevnextTop
sub _get_data_length {
    my($key, $value) = @_;
    my $length = 0;
    my %refs;

    my @data = ($$key, $$value);
    while(my $elem = shift @data) {
	next if $refs{$elem};
	$refs{$elem} = 1;
	if(ref $elem && $elem =~ /(SCALAR|HASH|ARRAY)/) {
	    my $type = $1;
	    $length += $REF_SIZE; # guess, 16 bytes per ref, probably more
if (($type eq 'SCALAR')) { $length += length($$elem); } elsif (($type eq 'HASH')) { while (my($k,$v) = each %$elem) { for my $kv($k,$v) { if ((ref $kv)) { push(@data, $kv); } else { $length += length($kv); } } } } elsif (($type eq 'ARRAY')) { for my $val (@$elem){ if ((ref $val)) { push(@data, $val); } else { $length += length($val); } } } } else { $length += length($elem); } } $length;
}
create_nodedescriptionprevnextTop
sub create_node {
    my($self, $key, $value, $length) = @_;
    (defined($$key) && defined($$value)) 
      || die("need more localized data than $$key and $$value");
    
    # max_size always defined when max_bytes is
if (($self->{max_size})) { $length = defined $length ? $length : &_get_data_length($key, $value) } else { $length = 0; } # ORDER SPECIFIC, see top for NODE ARRAY STRUCT
my $node = [ $$key, $$value, $length ];
}
deletedescriptionprevnextTop
sub delete {
    my($self, $key) = @_;    
    my $node = $self->{nodes}{$key} || return;
#    return unless $node;
$self->print("delete() [$key, $node->[$VALUE]]") if ($self->{dbg} > 1); my $before = $node->[$BEFORE]; my $after = $node->[$AFTER]; # my($before, $after) = $node->{before,after};
if($before) { ($before->[$AFTER] = $after); } else { $self->{head} = $after; } if($after) { ($after->[$BEFORE] = $before); } else { $self->{tail} = $before; } delete $self->{nodes}{$key}; $self->{bytes} -= ($node->[$BYTES] + $STRUCT_SIZE); $self->{count}--; $node;
}
flushdescriptionprevnextTop
sub flush {
    my $self = shift;

    $self->print("FLUSH CACHE") if ($self->{dbg} > 1);

    my $node = $self->{head};
    my $flush_count = 0;
    while($node) {
	if($node->[$DIRTY]) {
	    $self->print("flush dirty write() [$node->[$KEY], $node->[$VALUE]]") 
	      if ($self->{dbg} > 1);
	    $self->write($node->[$KEY], $node->[$VALUE]);
	    $node->[$DIRTY] = 0;
	    $flush_count++;
	}
	$node = $node->[$AFTER];
    }

    $flush_count;
}
insertdescriptionprevnextTop
sub insert {
    my($self, $new_node) = @_;
    
    $new_node->[$AFTER] = 0;
    $new_node->[$BEFORE] = $self->{tail};
    $self->print("insert() [$new_node->[$KEY], $new_node->[$VALUE]]") if ($self->{dbg} > 1);
    
    $self->{nodes}{$new_node->[$KEY]} = $new_node;

    # current sizes
$self->{count}++; $self->{bytes} += $new_node->[$BYTES] + $STRUCT_SIZE; if($self->{tail}) { $self->{tail}[$AFTER] = $new_node; } else { $self->{head} = $new_node; } $self->{tail} = $new_node; ## if we are too big now, remove head
while(($self->{max_count} && ($self->{count} > $self->{max_count})) || ($self->{max_bytes} && ($self->{bytes} > $self->{max_bytes}))) { if($self->{dbg} > 1) { $self->print("current/max: ". "bytes ($self->{bytes}/$self->{max_bytes}) ". "count ($self->{count}/$self->{max_count}) " ); } my $old_node = $self->delete($self->{head}[$KEY]); if ($self->{subclass}) { if($old_node->[$DIRTY]) { $self->print("dirty write() [$old_node->[$KEY], $old_node->[$VALUE]]") if ($self->{dbg} > 1); $self->write($old_node->[$KEY], $old_node->[$VALUE]); } } # if($self->{dbg} > 1) {
# $self->print("after delete - bytes $self->{bytes}; count $self->{count}");
# }
} 1;
}
pretty_chainsdescriptionprevnextTop
sub pretty_chains {
    my($self) = @_;
    my($str);
    my $k = $self->FIRSTKEY();

    $str .= "[head]->";
    my($curr_node) = $self->{head};
    while($curr_node) {
	$str .= "[$curr_node->[$KEY],$curr_node->[$VALUE]]->";
	$curr_node = $curr_node->[$AFTER];
    }
    $str .= "[tail]->";

    $curr_node = $self->{tail};
    while($curr_node) {
	$str .= "[$curr_node->[$KEY],$curr_node->[$VALUE]]->";
	$curr_node = $curr_node->[$BEFORE];
    }
    $str .= "[head]";

    $str;
}

1;

__END__
}
pretty_selfdescriptionprevnextTop
sub pretty_self {
    my($self) = @_;
    
    my(@prints);
    for(sort keys %{$self}) { 
	next unless defined $self->{$_};
	push(@prints, "$_=>$self->{$_}"); 
    }

    "{ " . join(", ", @prints) . " }";
}
printdescriptionprevnextTop
sub print {
    my($self, $msg) = @_;
    print "$self: $msg\n";
}
readdescriptionprevnextTop
sub read {
 undef;
}
General documentation
INSTALLATIONTop
Tie::Cache installs easily using the make or nmake commands as
shown below. Otherwise, just copy Cache.pm to $PERLLIB/site/Tie
	> perl Makefile.PL
> make
> make test
> make install
* use nmake for win32 ** you can also just copy Cache.pm to $perllib/Tie
BENCMARKSTop
There is another simpler LRU cache implementation in CPAN,
Tie::Cache::LRU, which has the same basic size limiting
functionality, and for this functionality, the exact same
interface.
Through healthy competition, Michael G Schwern got
Tie::Cache::LRU mostly faster than Tie::Cache on reads & writes:
 Cache Size 5000       Tie::Cache 0.17  Tie::Cache::LRU 0.21
10000 Writes 1.55 CPU sec 1.10 CPU sec
40000 Reads 1.82 CPU sec 1.58 CPU sec
10000 Deletes 0.55 CPU sec 0.59 CPU sec
Unless you are using TRUE CACHE or MaxBytes functionality,
using Tie::Cache::LRU should be an easy replacement for Tie::Cache.
TRUE CACHETop
To use class as a true cache, which acts as the sole interface
for some data set, subclass the real cache off Tie::Cache,
with @ISA = qw( 'Tie::Cache' ) notation. Then override
the read() method for behavior when there is a cache miss,
and the write() method for behavior when the cache's data
changes.
When WriteSync is 1 or TRUE (DEFAULT), write() is called immediately
when data in the cache is modified. If set to 0, data that has
been modified in the cache gets written out when the entries are deleted or
during the DESTROY phase of the cache object, usually at the end of
a script.
To have the dirty data write() periodically while WriteSync is set to 0,
there is a flush() cache API call that will flush the dirty writes
in this way. Just call the flush() API like:
  my $write_flush_count = tied(%cache)->flush();
The flush() API was added in the .17 release thanks to Rob Bloodgood.
TRUE CACHE EXAMPLETop
 use Tie::Cache;
# personalize the Tie::Cache object, by inheriting from it package My::Cache; @ISA = qw(Tie::Cache); # override the read() and write() member functions # these tell the cache what to do with a cache miss or flush sub read { my($self, $key) = @_; print "cache miss for $key, read() data\n"; rand() * $key; } sub write { my($self, $key, $value) = @_; print "flushing [$key, $value] from cache, write() data\n"; } my $cache_size = $ARGV[0] || 2; my $num_to_cache = $ARGV[1] || 4; my $Debug = $ARGV[2] || 1; tie %cache, 'My::Cache', $cache_size, {Debug => $Debug}; # load the cache with new data, each through its contents, # and then reload in reverse order. for(1..$num_to_cache) { print "read data $_: $cache{$_}\n" } while(my($k, $v) = each %cache) { print "each data $k: $v\n"; } for(my $i=$num_to_cache; $i>0; $i--) { print "read data $i: $cache{$i}\n"; } # flush writes now, trivial use since will happen in DESTROY() anyway tied(%cache)->flush(); # clear cache in 2 ways, write will flush out to disk %cache = (); undef %cache;
NOTESTop
Many thanks to all those who helped me make this module a reality,
including:
	:) Tom Hukins who provided me insight and motivation for
finishing this module.
:) Jamie McCarthy, for trying to make Tie::Cache be all
that it can be.
:) Rob Fugina who knows how to "TRULY CACHE".
:) Rob Bloodgood, for the TRUE CACHE flush() API
AUTHORTop
Please send any questions or comments to Joshua Chamas
at chamas@alumni.stanford.org
COPYRIGHTTop
Copyright (c) 1999-2002 Joshua Chamas, Chamas Enterprises Inc.
Sponsored by development on NodeWorks http://www.nodeworks.com
All rights reserved. This program is free software;
you can redistribute it and/or modify it under the same
terms as Perl itself.